C++InterfacetoTauola
anomGamwt.f
1  Subroutine dipolgammarij (iqed, E, theta, A, B, R)
2 
3 c For gamma gamma -> tau- tau+ reaction
4 c
5 c Calculates spin-correlation coefficients R(i,j) as functions of beam
6 c energy E = sqrt(s)/2 (in GeV) and scattaring angle theta.
7 c V is velocity of tau lepton, gam is Lorentz factor, alpha is
8 c fine-structure constant.
9 c Anomalous magnetic moment A1 = ASM + A and electric dipole moment B are
10 c real constants.
11 c Parameters A, B describe 'New Physics'.
12 c ASM is anomalous magnetic moment of tau in Standard Model (SM):
13 c S.Eidelman and M.Passera. Mod.Phys.Lett. A22, 159-179, 2007.
14 c
15 c Order of coefficients:
16 c i = 1,2,3 correspond to S_x, S_y, S_z for tau-,
17 c j = 1,2,3 correspond to S'_x, S'_y, S'_z for tau+
18 c i,j = 4 (equivalent to tt) corresponds to 1 (no spin dependence).
19 
20  Implicit none
21  integer iqed
22  integer i, j ! not used here
23  real*8 e, theta, a, b, asm, a1, gam, e4, v
24  real*8 r(1:4, 1:4)
25  real*8 pi/3.141592653589793238d0/,alpha/7.2973525693d-3/
26  real*8 mtau/1.77686d0/ ! mass of tau in GeV
27 
28  v = dsqrt(1.d0 -(mtau/e)**2) ! tau velocity
29  e4 = (4.0d0 *pi *alpha)**2 ! (electric charge)^4
30  gam = e/mtau ! Lorentz factor for tau
31 
32 c Cotribution to anomalous magnetic moment in Standard Model:
33  asm = 1.17721d-3
34  asm = asm *iqed ! switch for dipole SM part
35  a1 = asm + a ! Standard Model + New Physics
36 
37  d2 = (v**2 *dcos(theta)**2 -1.d0)**2 ! factor in denominator
38 
39  r(1,1) = e4 *(-11.d0 *v**4 +28.d0 *a1 *v**2 +
40  $ 4.d0 *(v**2 -2.d0) *dcos(2.d0*theta) *v**2 -
41  $ (v**2 -4.d0 *a1 -2.d0) *dcos(4.d0*theta) *v**2 +
42  $ 22.d0 *v**2 -32.d0 *a1 -8.d0) /(8.d0 *d2)
43 
44  r(1,2) = e4 *v *b *(dcos(4.d0*theta) *v**2 +15.d0 *v**2 +
45  $ 4.d0 *cos(2.d0*theta) -20.d0) /(4.d0 *d2)
46 
47  r(1,3) = e4 *v**2 *gam *((a1 -1.d0) *v**2 +
48  $ (v**2 +a1 *(v**2 -2.d0) -1.d0) *dcos(2.d0*theta) +1.d0) *
49  $ dsin(2.d0*theta) /(2.d0 *d2)
50 
51  r(1,4) = 0.d0
52 
53  r(2,1) = -r(1,2)
54 
55  r(2,2) = e4 *(-dcos(4.d0*theta) *v**4 -11.d0 *v**4 +
56  $ 16.d0 *a1 *v**2 +4.d0 *(v**2 +4.d0 *a1) *dcos(2.d0*theta) *v**2 +
57  $ 16.d0 *v**2 -32.d0 *a1 -8.d0) /(8.d0 *d2)
58 
59  r(2,3) = e4 *v *gam *b *(dcos(2.d0*theta)*v**2 -3.d0*v**2 +2.d0) *
60  $ dsin(2.d0*theta) /(2.d0 *d2)
61 
62  r(2,4) = 0.d0
63 
64  r(3,1) = r(1,3)
65 
66  r(3,2) = -r(2,3)
67 
68  r(3,3) = e4 *(-4.d0 *dcos(2.d0*theta) *v**4 +11.d0 *v**4 +
69  $ 36.d0 *a1 *v**2 +(v**2 -4.d0 *a1 -2.d0) *dcos(4.d0*theta) *v**2 +
70  $ 2.d0 *v**2 -32.d0 *a1 -8.d0) /(8.d0 *d2)
71 
72  r(3,4) = 0.d0
73 
74  r(4,1) = 0.d0
75 
76  r(4,2) = 0.d0
77 
78  r(4,3) = 0.d0
79 
80  r(4,4) = e4 *(-dcos(4.d0*theta) *v**4 -11.d0 *v**4 -16.d0 *a1 *v**2 +
81  $ 4.d0 *(v**2 -4.d0 *a1 -2.d0) *dcos(2.d0*theta) *v**2 +
82  $ 8.d0 * v**2 +32.d0 *a1 +8.d0) /(8.d0 *d2)
83 
84  return
85  end