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Abstract

Because of their narrow width, τ decays can be well separated from their production process.
Only spin degrees of freedom connect these two parts of the physics process of interest for high
energy collision experiments. In the following, we present a Monte Carlo algorithm which is
based on that property. The interface supplements events generated by other programs, with
τ decays. Effects of spin, including transverse degrees of freedom, genuine weak corrections or
of new physics may be taken into account at the time when a τ decay is generated and written
into an event record. The physics content of the C++ interface is already now richer than its
FORTRAN predecessor. June 12, 2013
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PROGRAM SUMMARY

Manuscript title: Universal interface of TAUOLA Technical and Physics Documentation

Authors: N. Davidson, G. Nanava, T. Przedziński, E. Richter-Wa̧s, Z. Wa̧s

Program title: TAUOLA++, versions 1.0.2, 1.0.3, 1.0.4, 1.0.5, 1.0.6, 1.1.0, 1.1.1

Licensing provisions: No other than resulting from CPC publication. In addition, HepMC
event record interface implementation is under the GPL licence.

Programming languages: C++, FORTRAN77

Operating system(s) for which the program has been designed: Linux, MacOS

RAM required to execute with typical data: <10MB

Has the code been vectorised or parallelized?: No

Number of processors used: 1

Supplementary material: None

Keywords: tau decays; Monte Carlo simulation; Event Record interface; event generation;
spin effects;

CPC Library Classification: 11.2 - Phase Space and Event Simulation

External routines/libraries used: HepMC v2.0 or later.

CPC Program Library subprograms used: Demonstration programs use PYTHIA, MC-TESTER

Nature of problem:
The code of Monte Carlo generators often has to be tuned to the needs of large HEP Collab-
orations and experiments. In particular τ lepton decays need to be added (or modified) to
the previously generated (or measured) events encapsulated in an event record.

Solution method:
The new algorithm, the universal interface of TAUOLA which works with the HepMC event
record of C++ applications is documented. It uses the τ decay generator as described in [2]
with the updates explained in [1]. For the new interface spin treatment was improved. For
example it features complete spin effects in processes mediated by Z/γ∗ interactions. The
effects of electroweak corrections can be taken into account in this case as well. In general,
the program superseeds its FORTRAN predecessor [1]. The event record analysis as well as
initialization is also modernized.

Restrictions:
The input event record must meet the requirements described in Section 2.3.1 of the docu-
mentation.

Unusual features:
Two sets of installation scripts; an additional tool for calculating tables for electroweak
corrections.

Running time:
Depends on the size and complexity of the events. Small events (<50 particles), require 1 to
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7 minutes for processing 1M events on PC/Linux with a 2.4GHz processor.
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1 Introduction

Before we can present TAUOLA Interface, now in C++, we have to briefly explain the ap-
plications and constraints which helped us to define the main tasks that an interface for a
τ decay generator has to resolve. The new interface represents an upgrade of the interface
written in FORTRAN and documented in [1].

In the present day experiments at High Energy Physics accelerators, interpretation of the
results is becoming more and more complex. Not only is the detector response increasingly
more complex, but theoretical effects sometimes need to be removed to simplify the interpre-
tation of results for non-experimentalists. Otherwise results are difficult to interpret for the
non-specialist. For example, the concept of work with realistic and idealized observables was
introduced and refined at LEP time.

Good examples of this approach were measurements of the two-fermion final states at LEP.
Because of the increasing precision of the experimental measurements, the definitions of
the quantities to be measured, while simple at first, later evolved into several options [2],
each based on the properties of individual detectors and each requiring individual discussion
of the systematic error. Pseudo-observables which can be easily understood by theorists,
such as W and Z masses or couplings are being published and compiled [3], rather than
raw multidimensional distributions folded with backgrounds. The LHC experiments use and
refine methodology which originated during LEP times. Good recent examples are: the
energy flow algorithm of CMS, see. [4] and the algorithm for embedding τ ’s into Z → µ+µ−

data as presented by ATLAS in [5].

These examples may also give some light on why the solutions, from the point of view of
an experimental user, in which all theoretical effects are embodied into one black-box, and,
experiments while using it only tune parameters to fit the data is not always the most effective
one. The interpretation of the observed effects could be then clearly separated into theoretical
and experimental components. Unfortunately this strategy is limited, as it leaves little room
for cases where theory and experimental effects are convoluted: the size and even nature
of the theoretical corrections depend on the experimental conditions. Such discussion on
observables involving τ decays, from the LHC preparation time, can be found eg. in [6].

For the LHC experiments, τ decays are not of primary interest in themselves, but rather will
be used to measure properties of τ production processes. Let us explain this using examples.
The physics effects necessary for the prediction of hard processes at the LHC experiments
can be separated into several parts, among them: parton showers, the underlying event
and structure functions, final state QED bremsstrahlung, QED bremsstrahlung interference
between initial and final states and finally the hard process including electroweak corrections.
Such separation is not only for the convenience of organizing theoretical work but provides an
efficient and flexible structure to the framework used for experimental data analysis (see eg.
[7]). Some such building blocks are of genuine theoretical interests, some others are not so
much. The hard process usually depends on the parameters intended for the measurement,
eg. the W or Higgs mass, or new coupling constants. Other building blocks may be less
interesting, nonetheless they may affect the results of measurements. This is certainly true in
the case of the underlying event, missing transverse energy or pT distributions generated from
parton showers [6]. It may also be the case for QED final state bremsstrahlung or initial-final
state interference (where potential difficulties may be expected [8] and predictions may need
to be fixed with the help of experimental data).

The black-box approach, where all simulation segments are put together by theorists, may
look at first advantageous for the experimental user. However one may then have less flexi-
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bility to distinguish the experimental effects from the theoretical ones, thus limiting control
on the detection systematic errors and possible options for optimalizing the detection al-
gorithms. Complications tend to show up with more detailed discussion of experimental
systematic errors and optimalization of the experimental analysis.

In the present document we discuss the implementation of τ decays into a simulation chain
as a separate module, now in C++, which can be configured by the end user. For the
purpose of generating τ decays themselves, the TAUOLA library, as described in [9, 10, 11]
is used. This part of the code is expected to be at first used as a black-box by the High
Energy experimental user. Such organization makes it easy for low energy phenomenologists
or experimentalists to work on this part of the code and on low energy data. The expected
activity is described in [12]. It should lead to the new parametrization of hadronic τ decay
currents becoming available for High Energy experimental users in a rather straightforward
way as well. At present, from the technical side, the black-box consists of the same FORTRAN

code as described in [1]. We will call it TAUOLA FORTRAN. Systematic errors due to the options
of τ decays modelling is not presently the prime concern for LHC applications. Once precision
will be sufficiently improved this box may need to be manipulated for LHC as well. We do
not expect such need to be imminent.

The role of the interface is to prepare information on the τ (four-momentum, spin state) in
a format which is understood by TAUOLA FORTRAN, and as a post processing step to return
(insert) τ decay products to the primary event record. Finally, the role of such interfacing
code is to calculate dedicated weights from the production process information as well as from
the decay, and unweight accordingly to standard MC procedures. Spin effects, electroweak
corrections and also effects of anomalous couplings can be introduced in this way.

It is up to the user to decide if for his project, the solution presented by us and based on the
communication between τ lepton production and decay through the event record, is of help.
Certainly for many applications this may be an unnecessary complication. In other cases
it may offer insufficient control of the τ lepton density matrix. Already in the distant past
[13, 14] different solutions were used. The τ lepton(s) spin density matrix was controlled by
a τ production program. We have prepared and put into our interface the methods necessary
for such a solution as well. Certainly such solution is much clearer if only theoretical aspects
are taken into account.

Finaly, one should keep in mind that all major Monte Carlo generators for the LHC have their
own built-in τ decay generators. They differ in the level of sophistication - from the point
of view of the τ decay itself, the production matrix elements and the spin implementation
algorithms. Let us list some programs, available in C++, which have already featured such
functionalities for some time: PYTHIA [15], HERWIG [16, 17] and SHERPA [18].

1.1 C++ Interface and its FORTRAN predecessor.

A rather modest version of TAUOLA Universal Interface based on the FORTRAN HEPEVT

event record is described in [1], we will call it TAUOLA Fortran Interface. A new version
of TAUOLA Universal Interface uses its own abstract event record which can be interfaced
to any C++ or FORTRAN event record. It also includes new functionalities. A particular
implementation using HepMC [19], the most popular C++ event record, will be documented
here as well. We will call it TAUOLA C++ Universal Interface, or, if no ambiguity could
arise simply TAUOLA C++ Interface or just TAUOLA Interface if it is clear that the C++
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not the FORTRAN version is in mind1. The PHOTOS generator for QED bremsstrahlung in
decays, which was previously distributed together with TAUOLA FORTRAN, is not discussed
in the present paper2. It is now embodied in a separate module [20, 21] of the Monte
Carlo simulation chain, as the PHOTOS generator has found significant applications outside
the domain of τ decays. That is why, we distribute the C++ version of PHOTOS separately
[22, 23].

Important physics improvements, with respect to the TAUOLA FORTRAN Interface implemen-
tation, described in [1], comes with the code presented here. In particular, transverse spin
correlations have been implemented for processes mediated by Z/γ∗ and genuine electroweak
corrections are now available for such processes. With the new interface, it is rather straight-
forward to implement effects beyond standard model physics. Only read-in data-tables should
be replaced, no modification to the code itself is needed. Further minor extensions include an
algorithm to decay a single τ with a user defined polarization, or the availability of methods
to access generated τ leptons helicity states.

This documentation describes version 1.1.1 of the interface3.

2 Requirements for TAUOLA Interface

2.1 General Requirements

For a τ decay to be generated it is enough to know its spin state and define the frame in
which the decay should be performed. In case there are more than one τ lepton in the final
state, the quantum spin state of both (or more) τ leptons must be provided in the form of a
density matrix. The exact algorithm for the generation of spin correlations has existed since
the papers [9, 10, 11]. However, for the algorithm to function, the density matrix must be
known exactly as well.

In practice, the actual form of the spin density matrix (in our present paper it will be called
Rij , exactly as in the original TAUOLA FORTRAN and its documentation) is often available with
some approximations only. With the increasing precision of experiments, one may need to
remove certain approximations introduced into Rij . Already now, our program features, as an

1The main class of TAUOLA C++ Universal Interface is called Tauola.
2PHOTOS was distributed together with TAUOLA since Ref. [1]. That is why it is present in our TAUOLA

FORTRAN but will be not used here.
3Version 1.0.3, with respect to version 1.0.2 (documented in our paper first preprint v.1) introduced changes

affecting the use of Plots and Debugging methods, see Appendix C.11. Separation of the main programs in

the examples and testing directories was introduced. Configuration of this part of the distribution is now

separated from configuration of the TAUOLA libraries as well. Changes were introduced for the sake of better

modularity and clarity for the first use and installation. In Version 1.0.4 alternative initialization scrips were

introduced as an option. See section B.2 for details. In Version 1.0.5 method Tauola::summary() was

introduced. Until this version, for kinematical configurations of high pT quarks accompanying intermediate

Z, the getZpolarization method could fail. Then, fatal error was reported and execution was stopped.

Minor bug fixing and code cleaning was performed as well. In Version 1.0.6 option --without-hepmc and

appropriate example became available. Version 1.1.0 introduces compatibility with RChL currents [24] and

merges TauSpinner [25] tool into the TAUOLA distribution. Version 1.1.1 introduces an update to TauSpinner

to allow user-specified weight calculation in Z/γ∗ induced processes, resulting from introduction of additional

interactions, such as spin 2 object.
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option, complete spin effects in decays of τ pairs originating from the annihilation of quarks.
Effects of genuine weak corrections are included, and an extension for the implementation of
new physics signatures is straightforward.

One should not forget that the density matrix itself is not the only place approximations
occur. Effects of higher order QCD corrections need to be taken into account to define the
kinematical configuration of initial partons used in spin density calculations (otherwise the
density matrix for each individual process would have to be provided). At present, this is
available in the leading (collinear) approximation only.

Before we will discuss details of specific implementation, let us recall first, the minimal list
of steps the interface has to perform, independent of the programming language and data
structure used.

1. The τ lepton or lepton pair(s) have to be localized in the event record. For processes
mediated by W bosons (or charged Higgs), ντ has to be localized as well.

2. If possible, the hard process leading to τ production has to be determined. This is
necessary to control transverse spin correlations. Preferably minimal information from
the host generators should be used. This is to reduce dependence on the host program4.

3. Flavours and orientation of fields entering the production vertex for intermediate states,
such as Z/γ∗, have to be reconstructed too. This orientation (with respect to τ±

rest-frames) is necessary for calculation of the τ± spin density matrix, if the spin of
intermediate state is different from zero.

4. The relative orientation of τ+ and τ− rest-frames should be established and respected
by Lorentz transformations.

5. Transformation of τ decay products from the τ rest-frame to lab frame has to be
performed and the event record has to be completed with τ decay products.

2.2 C++ Specific Requirements

The C++ version of TAUOLA Interface implements all functionalities of its predecessor,
TAUOLA Interface coded in FORTRAN [1]. It can be attached to any Monte-Carlo program
where τ ’s are generated, provided its output is available through a HepMC [19] event record5.

This condition is not very restrictive, is seems that HepMC will remain a generally accepted
standard for the near future. However, already now several different options for how HepMC is
used are widespread. The possibility to flexibly adaptate our event record interface to different
options has been considered in the design, drawing experience from MC-TESTER [26, 27]. We
have also envisaged the possibility that HepMC may one day be replaced by another standard
of event record, and we have provided an easy way to extend the interface to a possible new
event record standard.

4We target also applications when event records will be filled by measured data. For example, measured

µ+µ− events can be modified and final state muons replaced appropriately with τ+τ− pairs. Then the

generation of τ lepton decays is necessary.
5It is straightforward to use in our interface a FORTRAN or C++ event record other than HepMC. A minimalistic

example of such use is already prepared for the present distribution and is listed in Section 3.2.
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2.3 Object Oriented Event Records – The Case of HepMC

In adapting TAUOLA Interface to the C++ event record format the difference between the
HEPEVT event record used in the FORTRAN version of TAUOLA Interface and HepMC event
record which is used for the C++ based interface has to be taken into account. In the first
case the whole event was represented by a common block containing a list of particles with
their properties and with integer variables denoting pointers to their origins and descendants.
The HepMC event structure is built from vertices, each of them having pointers to their origins
and descendants. Links between vertices represent particles or fields. In both, FORTRAN and
C++ cases, the event is structured as a tree6, the necessary algorithms are analogous, but
nonetheless different.

In HepMC version 2.04, an event is represented by a GenEvent object, which contains all
information regarding itself, including event id, units used for dimensional quantities in the
event and the list of produced particles. The particles themselves are grouped into GenVertex

objects allowing access to mother and daughter particles of a single decay. Vertices provide
an easy way to point to the whole branch in a decay tree that needs to be accessed, modified
or deleted if needed. The information of a particle itself is stored in a GenParticle object
containing the particle id, status and momentum as well as information needed to locate
its position in the decay tree. This approach allows traversing the event record structure in
several different ways.

The HepMC event record format is evolving with time, making it necessary to adapt the code
to the new versions. HepMC version 2.05 is used as a reference. In the case of version 2.03
restrictions on methods for units conversion have to be taken into account, for details see
Appendix B.7. One should keep in mind that future changes to HepMC may restrict backward
compatibility.

Evolution of the HepMC format itself is not a crucial problem. On the contrary, the conventions
for how physics information is filled into HepMC represent the main source of technical and also
physics challenge for our interface. This is quite similar to the previous HEPEVT - FORTRAN

case. Let us discuss this point in more detail now.

2.3.1 Event Record Structure Scenarios

While many Monte-Carlo generators (eg. PYTHIA 8.1 [15], HERWIG++ [16]) store events in
HepMC format, the representations of these events are not subject to strict standards and can
therefore vary between Monte-Carlo generators or even physics processes. Some examples of
these variations include the conventions of status codes, the way documentary information
on the event is added, the direction of pointers at a vertex and the conservation (or lack
of conservation) of energy-momentum at a vertex. Below is a list of properties for basic
scenarios we have observed in Monte-Carlo generators used for testing the code.

This list will serve as a declaration for convention of HepMC filling, which the interface should
be able to interpret correctly.

• 4-momentum conservation is assumed for all vertices in the event record.

• Status codes: only information on whether a given particle is incoming, outgoing or
intermediate will be used.

6At least in principle, because in practice its properties may be rather of a graph without universally

defined properties. This makes our task challenging.
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• Pointers at a vertex are assumed to be bi-directional. That is, it is possible to
traverse the record structure from mother to daughter and from daughter to mother
along the same path.

Extensions/Exceptions to this specifications are handled in some cases.

• Vertices like τ± → τ± and τ∓ → τ∓γ where 4-momentum conservation is not preserved,
but this non-conservation is balanced, for example, between the two branches outgoing
from a Z.

• Lines representing intermediate bosons may be missing. In fact this may be unavoid-
able, if several diagrams contribute simultaneously. In that case, our algorithm makes
a choice based on an approximation that only the dominant single diagram is consid-
ered and an intermediate boson state is defined accordingly on the fly. Other possible
treatments: statistical choice of the dominant process, or calculations based on higher
order matrix elements for the hard process, are not available at present.

• As in the FORTRAN cases, we expect that new types of conventions for filling the event
record will appear, because of physics motivated requirements. Unfortunately, the re-
sulting options do not always guarantee an algebraically closed structure. Host program
specific patches may need to be written for TAUOLA Interface. Debugging it could be
time consuming, and will need to be repeated for every new case.

Detailed conventions for the actual filling of physics information into HepMC format is defined
by authors of each Monte Carlo program. In future, an important special case of event
records filling with information extracted from experimentally observed event (eg. Z → µ+µ−

modified later to Z → τ+τ−) should be allowed. Obviously, a new type (or types) of HepMC
filling will then appear.

The main algorithm7 does not represent progress with respect to what was available in the
FORTRAN predecessor of our interface documented in [1]. It is thus justified to ask if the
systematic error resulting from its use is under sufficient control for the present day. One can
however argue, that the parton shower algorithms used in PYTHIA, HERWIG or SHERPA, which
are based on ordering in some kinematical variable, do not represent a significantly higher
standard than our approach, which rely on a leading logarithms approximation. Thus, it
should not contribute sizably to the systematic error. What is more, the related uncertainty
affects the calculation of angular dependence for τ -pair spin state in processes mediated by
intermediate Z/γ∗ states only.

The ultimate answer will require comparisons with the programs listed above and other
programs featuring matrix elements. Comparisons with novel parton showers of NLO type,
eg. as being developed in [28] or the implementation of NLO corrections into existing Monte
Carlo programs [29, 30] can be of great help and source of improvements as well8. From

7 Defined in subsection 2.1 and subsection 4.4, points (a)-(d).
8 If the on-shell kinematic configuration for the quark (gluon) initial state annihilation into τ ’s is eventually

accompanied by the other on-shell states like quarks or photons, the rules to calculate τ ’s spin density matrix

are clearly defined. This will be the case of those NLO type solutions where such kinematical configurations

can be deciphered or, better still, matrix elements or a density matrix are available. Usually this will be true

for the hard emissions last generated by the parton shower. In the case of parton showers where consecutive

emissions are based on the QCD factorization, the consequences for the definition of spin states, due to

eg. missing interferences, need to be studied. Let us point to the overview of assumptions of factorization

theorems, which should be addressed in the context of final state spin, see e.g. [31] and references therein.
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our side the first step for such studies is already prepared. An iterative form of single and
double gluon emission amplitudes for massive fermion pair production in quark annihilation
is documented in Ref. [32]. Numerical effects on the spin density matrix related to final state
QED bremssthahlung are rather small. They were analyzed in the context of work for the LEP
time generator KKMC [14], which replaced KORALZ [33]. This work was not documented
in a form suitable for our purpose. Matrix element extensions for PHOTOS Monte Carlo [22] is
another preparatory step necessary for the study of systematic errors due to the evaluation
of the spin density matrix for τ final states. Once evaluations of the required experimental
conditions are completed, in particular the precision level required for spin effects is known,
the study can be continued. From the side of our Interface a method useful for such studies
is prepared and documented in Appendix C.9. Fortunately at the present time, the precision
required from experiments on the theoretical aspects of τ spin is not very high. Much more
important is to provide help for their studies of τ spin sensitivity for the measurements and
reconstruction algorithms being developed.

3 Design

The structure of our code is documented using Doxygen standards [34] and is presently
available from the project web page [35]. The source code for this web page is also available in
our package distribution. Doxygen documentation can be thus compiled on a users platform,
and hence provide documentation which matches the actual version of the distribution.

Let us present here briefly the directory structure and list the main classes with a short
description of their functionality.

3.1 Interface Structure and Responsibilities

The choice of splitting the source code into three main modules, see Fig. 3.1 (blue part), allows
separation of the FORTRAN related code from the abstract C++ interface and the concrete
implementation of the interface created for the appropriate event record.

• Tauola Fortran Interface
This part of the code provides an interface to the FORTRAN library of TAUOLA. In par-
ticular, it provides routines necessary for library initialization and a wrapper for the
routine which invokes the decay of a single τ . Parts of the interface code are still left
in FORTRAN, but can be rather easily rewritten to C++. The most important method,
filhep , is already implemented in C++. Its FORTRAN predecessor writes single parti-
cles to the HEPEVT common block. At present the method filhep inserts the particle
into any event record but remains to be called from the FORTRAN library. For further
details see Appendix A.

• Tauola C++ Interface
The abstract part of the interface to the event record. The class TauolaEvent contains
information regarding the whole event structure, while TauolaParticle stores all in-
formation regarding a single particle. All particles used by the interface are located in
the event in the form of a list of TauolaParticle objects. The last class located here,
TauolaParticlePair, is the core of all polarization and decay algorithms. They are
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Figure 1: TAUOLA C++ Interface class relation diagram

independent from the event record used by the interface as they operate on these two
abstract classes presented above.

• Event Record Interface
The event record implementation classes. All classes stored here represent the imple-
mentation of specific event record interfaces and are responsible for reading, traversing
and writing to the event record structure. Only TauolaEvent and TauolaParticle

classes must be implemented. The HepMC event record interface is implemented through
TauolaHepMCEvent and TauolaHepMCParticle. An example of a minimalistic inter-
face to an event record has been provided through the classes TauolaHEPEVTEvent and
TauolaHEPEVTParticle. They can be used as a template for a new interface to any
other event record9.

3.2 Directory Structure

• src/eventRecordInterfaces/ - source code for classes which interface with HepMC.
Classes:

9Thanks to the polymorphism, abstract part of the algorithm is well separated from the specific event

record implementations. It even allows simultaneous use of several distinct event record implementations. In

fact, for PYTHIA event record, we have prepared and tested another one, skipped however from our project

distribution.
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– TauolaHepMCEvent - interface to HepMC::GenEvent objects.

– TauolaHepMCParticle - interface to HepMC::GenParticle objects.

– TauolaHEPEVTEvent - interface to the event structure of the HEPEVT format.

– TauolaHEPEVTParticle - interface to a single particle from the HEPEVT event
record.

• src/tauolaCInterfaces/ - source code for general TAUOLA Interface classes, such
as those responsible for spin correlations and boosting.
Classes:

– DecayList - storage class for keeping track of TauolaParticles and their indices.

– Tauola - controls the configuration and initialization of TAUOLA FORTRAN.

– TauolaEvent - abstract base class for event information.

– TauolaParticle - abstract base class for particles in the event. This class also
handles particle boosting.

– TauolaParticlePair - contains two objects of type TauolaParticle that are
related by the same mother. Spin correlations and other minor algorithms are
handled here.

• src/tauolaFortranInterfaces/ - interface to TAUOLA FORTRAN routines and common
blocks.
Files:

– f Decay - contains a wrapper for the TAUOLA FORTRAN routine for decaying τ ’s
(DEKAY).

– f FilHep - provides a method which TAUOLA FORTRAN calls to fill a τ decay
product into the event record.

– f Init - contains a wrapper for the TAUOLA FORTRAN routines for tauola initial-
ization.

– f Variables - contains definitions of TAUOLA FORTRAN routines and common
blocks used by other methods in tauolaFortranInterfaces.

– tauola extras.f - contains extra FORTRAN routines (taken from the TAUOLA Interface

in FORTRAN) which should ultimately be migrated to C++.

• src/utilities/ - source code for utilities that help in debugging and plotting distribu-
tions.
Classes:

– Log - general purpose logging class that allows filtering out output messages of
TAUOLA C++ Interface and keeps statistics regarding a TAUOLA run.

– Plot - a simple class that gathers data for some useful debug plots.

• examples/ - examples of different TAUOLA C++ Interface uses.

– taumain hepevt example - stand alone example with a simple e+e− → τ+τ−

event written in HEPEVT format and then τ ’s decayed by TAUOLA.

– taumain stand alone example - stand alone example with a simple e+e− →
τ+τ− event in HepMC format and then τ ’s decayed by TAUOLA.

– single tau gun example - example of TAUOLA linked with PYTHIA 8.1 and used
to decay a single τ selected from the event record.

– taummk pythia example - example of TAUOLA linked with PYTHIA 8.1. It
prints the share of energy for charged hadronic tau decay products from PYTHIA

and TAUOLA.
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– taumain pythia example - example of TAUOLA linked with PYTHIA 8.1, and
the decay chain analysed with MC-TESTER.

• examples/testing/ - Directory containing advanced tests. For details on running and
compiling the examples, see Appendix B.5.

• SANC/ - code for the computation of electroweak corrections.

• include/ - directory for the header files.

• lib/ - directory for the compiled libraries.

• documentation/ - contains doxygen documentation and this latex file.

• tauola-fortran/ - standard TAUOLA FORTRAN distribution exactly as described in
Ref. [1]10. It is kept intact and is prepared for future updates, see Ref. [12] for de-
tails of that project.

3.3 Algorithm Outline

An overview of the algorithm for the TAUOLA Universal Interface is given below, for more
detail the reader should refer to the project’s Doxygen documentation [35]. Documentation of
the TAUOLA FORTRAN Interface [1] describes some aspects of the spin correlation algorithm
which are also relevant to this interface.

The first step is creation of a TauolaHepMCEvent object from a HepMC::GenEvent event
record. At this step the units for dimensional quantities (four-momenta, masses, etc.) are
checked, and if needed the HepMC event record is reset to use GEV and MM ensuring proper
execution of the τ decay library. After a TauolaHepMCEvent is created the decayTaus()

method should be executed by the user’s code11, invoking the following process:

1. The HepMC event record is traversed and a list of all stable τ ’s in the event is created.

2. From each τ location found, the tree is traversed backwards so that information about
the production process can be extracted and used for the calculation of the spin density
matrix12.

3. The siblings of the τ are identified through common parents, i.e. by requiring that they
are produced at the same HepMC vertex. In cases such as τ → γτ , the parent(s) are
defined as the particle(s) which produced the first τ ; τ and ντ siblings are paired to the
τ .

4. The density matrix is set-up using information about the τ -pair and their parent type
(for Z/γ processes, grandparent information is also required). This is described in detail
in Sec. 4. The density matrix assumes a center-of-mass frame for the τ -pair, with the
τ ’s and their grandparents orientated as shown in Fig. 2(a).

10 Our interface is prepared for the cleo initialization of FORTRAN TAUOLA. For other cases the configuration

routines of the interface need to be adapted.
11Prior to this step the user may want to execute Tauola::decayOne(...) for τ leptons, for cases where

TAUOLA Universal Interface is expected not to work properly. For details see Appendix C.9.
12Note that not always will all the necessary information be found. See the discussion at the end of

subsection 2.3.1 on the evaluation of the systematic errors. If kinematical information is incomplete, in some

cases (described in section 4.2) partial, or even no spin effects at all will be taken into account. These cases

should be investigated in the context of the information available in the case of the algorithm for embedding

τ ’s in Z → µ+µ− data as presented by ATLAS in [5].
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5. The pair is then decayed by executing the DEKAY routine for each τ in the pair. The
DEKAY routine is located in the tauola-fortran directory, for details see Appendix A.2.

6. A spin weight is calculated using the polarimetric vectors returned from TAUOLA FORTRAN

and the density matrix previously set-up (described in Sec. 4).

7. If the decays are rejected, the pair is decayed anew and the process is repeated until
the decays are accepted. In this way unweighting of spin effects is performed.

8. Once accepted, the decay products are added into the event record with the procedure
as follows:

(a) As the density matrix is only valid in the special reference frame of Fig. 2(a), the
τ -pair are boosted and rotated into this hard process frame.

(b) The DEKAY routine of TAUOLA FORTRAN is executed with state = 11 or 12 (write).
This initiates TAUOLA FORTRAN to return the daughter information via the filhep
routine (see Section A.2).

(c) The τ ’s status code is changed from “1” (stable particle) to “2” (intermediate
particle).

(d) A new HepMC::GenParticle object is created for each daughter and the appro-
priate tree structure is created and added into the event.

(e) Each daughter is boosted using the τ ’s 4-momentum (as TAUOLA constructs a decay
for a τ at rest) to the hard process frame.

(f) The τ ’s and their decay products are boosted back into the laboratory frame.

9. As the final step, the position of vertices containing the τ ’s and their decay products is
set according to the τ ’s momentum and lifetime.

The underlying HepMC::GenEvent is hence modified with the insertion of τ decay products.
All that remains is the conversion of the event back into its initial units, which is done via
the eventEndgame() routine of the TauolaHepMCEvent class. Also in the eventEndgame()

routine, vertex positions are adjusted according to the τ lifetime.

4 Calculation of Spin Correlations

If more than one τ lepton is present among final state particles, then not only is the individual
spin state for each τ necessary for proper generation, but the complete correlation matrix
of all τ leptons must be taken into account as well. In the case of τ -pair production, the
standard algorithm explained in [9, 11] can be used without much modification. For the
single τ produced in a τ, ντ pair, it is convenient to use the same algorithm as well, even
though it is not necessary from the physics point of view.

Let us present now the algorithm given in Refs. [9, 11]. We will use the definitions and
notations from these papers as well. We recall this description, because it documents the class
/src/tauolaCinterfaces/TauolaParticlePair.cxx which may need to be understood in
every detail by an advanced user. Spin correlations and spin polarization effects can be
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simulated by accepting or rejecting a pair of generated τ decays based on a weighting factor
wt.

wt =
1

4

4
∑

i,j=0

h1
i h

2
jRij (1)

where h1 and h2 are the polarimetric vectors for the τ+ and τ− respectively and Rij is
the density matrix associated with the τ production vertex. The matrix Rij depends on
the mechanism and particular kinematical configuration of the τ pair production. h1

i and
h2

j depend on the respective decays of τ+ and τ−. The approach can be used for τ − ντ

production as well. In this case a ντ decay is not performed and its polarimetric vector is set
to h = (2, 0, 0, 0).

A pair of τ decays should be accepted if the weight is greater than a randomly generated
number between 0 and 1. If this condition fails, the τ pair decays should either be rejected
and regenerated, or rotated13, and the weight recalculated. The production process does not
need to be reprocessed.

The density matrices, Rij , for the most standard processes of τ -pair production, are docu-
mented below. The following frame convention14 was adopted:

• The τ -pair’s center of mass system is used

• The τ+ (if present) lies along the positive z axis

• The τ− (if present) lies along the negative z axis

• The incoming beams (if present) lie in the z-y plane.

• If applicable, the incoming antiquark (or antilepton) y momentum component is posi-
tive.

h is defined such that h0=1 and h1,2,3 form the polarimetric vertex returned from TAUOLA

FORTRAN (see DEKAY in Appendix A.2). h is defined in the rest frame of the τ it was
calculated for. One should stress that formally speaking, Rij does not represent a Lorentz
invariant object. Its first index is defined in the rest frame of the τ+, whereas the second
index is in the frame of the τ−.

In the following subsections we will list the form of Rij for the most commonly used processes
of τ -pair (or τ , ν) production.

13Rotation instead of rejection increases efficiency by a factor of four. This however only affects the gener-

ation of τ lepton decays and represents a small fraction of the total time of constructing the event.
14Fig. 2(a) illustrates our choice too. There however the reaction frame is rotated by an angle θ around the

x axis.
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4.1 Form of Rij for Standard Processes

4.1.1 Z/γ → τ+τ−

R =









1 0 0 2Pz(cosθ) − 1
0 0 0 0
0 0 0 0

2Pz(cosθ) − 1 0 0 1









where Pz is calculated from the square of the matrix elements of the Born-level 2 → 2 process
ff̄ → τ+τ−.

Pz(s, θ) =
dσ(s,θ,+,+)

dΩ
dσ(s,θ,+,+)

dΩ + dσ(s,θ,−,−)
dΩ

θ is the angle between the incoming antiparticle beam and outgoing τ+. If the incoming
beam cannot be reconstructed from the event record the average of Pz should be used (which
is equal to Pz(cosθ = 0)). The “+” denotes that the spin states of τ+ and τ− are parallel to
the τ+ momentum. For “−” it is placed in the opposite direction.

The spin correlation matrix explained above is approximate and is valid only for longitudinal
spin effects. The object, Ri,j , is nonetheless prepared to host complete spin effects. For that
purpose the information available from the module based on SANC can be used, see Appendix
D. A further advantage to using this module is that genuine weak effects can be calculated
and included as a weight15, not only on polarization, but on the cross section as well. This
effect was found to be numerically important [36, 37] for final states of virtuality largely
surpassing the Z mass and should be taken into account prior to the implementation of new
physics effects.

In the formulas above, the hard process kinematical variables s and θ have to be known for
each event. These variables, together with the flavour of the incoming beam are used for
calculating electroweak corrections or the function Pz.16

To apply the method we need to identify the four momenta of the τ+ and τ− pair first. In the
rest frame of the pair the two effective partons leading to the hard process are not necessarily
back to back. Two scattering angles θ1 and θ2 can be thus reconstructed. The angle θ1 is
between the τ+ and the first incoming state, θ2 is between τ− and the second one17. Both
angles are calculated in the rest frame of the τ pair. The average angle θ•, according to the
description given in [40], is taken: cos θ• = sin θ1 cos θ2+sin θ2 cos θ1

sin θ1+sin θ2
.

If events originate from a generator such as PYTHIA, the flavour of incoming partons is ex-
plicitly given or it can be calculated using information encoded in the event record. In the
generic case, this information is not available, and one will have to rely on measured structure
functions and statistical choice. This is the method, for example, to be applied for embedding

15In a similar way one can implement effects of new physics, such as Z’ into the program. With the help

of our interface effects of weak corrections on the cross section, and not only on polarization can be installed

with additional weights.
16 The principle behind our solution is quite similar to the one used in PHOTOS Monte Carlo where it is

was shown [38] to be valid up to NLO (QED) precision level. It relies on the factorization properties of fully

differential distributions into the appropriately chosen Born level ones and emission factors. To achieve such

precision in the case of spin correlations in proton-proton collisions, rather challenging work on QCD matrix

elements would be necessary. At present, our predictions will not be better than LL on spin effects. It is

known [39], that the solution can not be constructed beyond NLO.
17We choose the first incoming state to be antiparticle.
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techniques in which muons are replaced by Monte Carlo generated taus in Z → µ+µ− (or
W → µνµ) decays present in experimental data. Known physics τ lepton background can be
thus estimated in this way. The resulting uncertainty will be free from the initial state QCD
contribution. Also angular polarization dependence due to different d and u quark couplings
to the Z is not that large. The mismatch between choosing a quark and antiquark has a
larger effect, see Fig. 1 of Ref. [41].

The density matrix presented above features only longitudinal spin correlations. Once the
matrix R is replaced with the one featuring complete spin effects, see Appendix D, the
transverse spin effects are taken into account as well.

4.1.2 H0 → τ+τ− and A0 → τ+τ− and mixed A0/H0 → τ+τ−

The complete density matrix for a scalar neutral Higgs boson H0 is rather simple,

R =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1









it is also true for a pseudoscalar neutral Higgs boson A0

R =









1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









A mixed A0/H0 → τ+τ− represents only a slightly more complicated case:

R =











1 0 0 0

0 (βcosφ)2−sinφ2

(βcosφ)2+sinφ2 − 2βcosφsinφ
(βcosφ)2+sinφ2 0

0 2βcosφsinφ
(βcosφ)2+sinφ2

(βcosφ)2−sinφ2

(βcosφ)2+sinφ2 0

0 0 0 −1











where β =
√

1 − ( 2Mτ

MA0/H0
)2 and φ is the scalar-pseudoscalar mixing angle.

4.1.3 W± → τ±ν

For W the matrix Rij takes the following form:

R =









1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0
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4.1.4 H± → τ±ν

For charged Higgs decay the matrix Rij differs from the W case by signs only:

R =









1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 0









4.2 Cases of Partly defined Hard Processes

4.2.1 τ+τ− Pair with Multiple Parents and Sisters

If a τ+τ− pair is found with multiple parents rather than a single parent, the parent type
is assumed to be a Z/γ with the 4-momentum reconstructed from the 4-momentum of the
τ pair. The density matrix 4.1.1 is used. For more details on the construction of effective
incoming beams see Section 4.4.

4.2.2 τντ Pair with Multiple Parents and Sisters

If a τ+ν pair is found with multiple parents rather than a single parent, the parent type is
assumed to be a W± with the 4-momentum reconstructed from the 4-momentum of the τ ντ

pair. The density matrix 4.1.3 is used.

4.2.3 Single τ and Multiple Unpaired τ ’s

In the two cases listed in the previous two subsections, no loss of physics precision with respect
to the level discussed at the end of Subsection 2.3.1 occurs. As usual it is of course good to
perform tests with matrix element generators of their own τ decay algorithms or using our
method documented in Appendix C.9 combined with the matrix element for calculation of
the τ ’s spin state.

However in the case of a single τ , with no τ or ντ pairing, spin effects are simply ignored. In
such cases the TAUOLA decayOne method, see Appendix C.9, can be used for the inclusion of
spin effects18. This method can be applied by the user to impose a spin state on a single τ .
The method can even be used for multiple final state τs and exact spin correlations. In these
cases a user defined quantization frame for each τ may be necessary. For each τ a distinct
routine for boosting from its rest-frame to the lab-frame may be necessary. The appropriate
method is explained in the Appendix mentioned above.

Another user defined option (which may become a default part of TAUOLA Interface in the
future) is when pairing can not be done on the basis of inspecting τ mother(s) but can be
performed according to the closeness of the reconstructed invariant masses of the pairs to the
masses of W ’s or Z’s (if the appropriate Standard Model processes are under considerations).
In general, as such configurations will often appear for processes of new physics, again a user
defined and hard process dependent solutions based on the TAUOLA decayOne method, might
be the only option.

18In principle this method can use the polarization vector stored in the HepMC event record in a straightfor-

ward manner. The proper orientation of the quantization frame must be nonetheless controlled by the user.

In particular the polarization vector must be given in the τ rest frame.
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4.3 Quantum Entanglement and Helicity States

One of the convenient feature of Monte Carlo simulation is the availability of variables used
in the generation of hard processes. However, it is often not possible to define in an exact
manner what is the energy transfer, eg. in the Z propagator, if several diagrams contribute
simultaneously. Nonetheless use of such information is tempting to validate the algorithms
used in experimental analysis to define observables.

Another example of such useful variables are the helicities of τ+ and τ−. Even though it
is possible to attribute such variables only in the ultrarelativistic limit and its use can be
restricted to a downgraded physics approximation only (quantum entanglement [42] ignored),
helicity was offering invaluable help at the time of LEP, for the measurement of τ polarization
[43].

Our program provides the helicity states of τ+ and τ− even in cases when exact spin effects are
taken into account in the generation, as is the case of processes mediated by an intermediate
Z/γ∗ state or in a Higgs boson decay. We just attribute helicity states for the τ lepton
after decays are already generated and accepted. The approximation used in calculation of
these helicities is explained in Section 4.5 and technical aspects of our solution are given in
Appendix C.7. This information can be used for solutions similar to the ones in [43], but this
time for LHC purposes.

4.4 Handling of Events with Bremsstrahlung or Parton Shower

Activity

Obviously, there are cases, when spin correlations calculated from Born level processes can
not be applied directly. Good examples are: (a) Z → τ+τ−γ, (b) f1 + f2 → Z + X,
Z → τ+τ− where the intermediate state Z is explicitly stored, (c) f1 + f2 → τ+τ−X or
f1 + f2 → τ+ντX where the Z state is not available. Here X represents a parton shower
and/or final state bremsstrahlung. The first step, necessary eg. for calculation of the spin
correlation matrix, is to reconstruct the effective Born level variables s and θ and the incoming
state flavours; the arguments of the function PZ . This is equivalent to the construction of
effective incoming and outgoing τ fields. Let us discuss now each case:

a) An additional photon is added to the τ with which it forms the smaller virtuality. For
construction of the transformation between the laboratory frame and rest frame of the
τ ’s, the effective state, Z − γ, frame is used instead of the intermediate Z frame. This
choice is motivated by inspection of the properties of the spin amplitudes. In such a
frame the effective incoming states, f1 and f2, will not necessarily be back to back.
The average of the two directions (θ∗, θ•, see Ref. [40]) can be used. The virtuality of
the Z is nonetheless used in the effective Born calculation.

b) Additional fields, X, representing parton showers should be subtracted from f1 or f2,
preferably from the one with which it forms the smaller virtuality. This is motivated by
inspection of the spin amplitudes. Once the effective incoming states are constructed,
the definition of boosting routines is straightforward.

c) This case is a combination of the two above. Additional fields should be subtracted from
f1, f2 or considered as originating from the intermediate Z (which is reconstructed on
the fly) together with τ+ and τ−. The minimalization of virtuality should be used as a
guide whenever a combinatorial choice has to be made. However electromagnetic charge
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or colour charge should not be neglected. Obviously photons should not be combined
with neutrinos nor gluons with leptons.

The approach presented above is explained in Ref. [1] in more detail. No new results con-
cerning theoretical systematic errors can be reprorted at this moment. Having work on the
extention of PHOTOS [22] with process dependent matrix elements completed, will offer ad-
ditional benefit for this question. In general for the discussion of the status of theoretical
systematic errors, see the last paragraph of subsection 2.3.1. Results as in [44] are of interest
too. The principle of our approach is based on the simplest (most basic) factorization prop-
erties of SM/QCD matrix elements. In particular the assumption is made that photon(s) can
be treated as (nearly) collinear with one of the final state τ leptons. Then the kinematics can
be built on the τ+τ− pair rest frame and the effective incoming states. The z axis is taken
along the effective antiparticle incoming state direction and the y axis is of the half plane
including the τ−. The second effective beam is then placed in the zy plane as well, even
though it is not back to back with the first one. For calculation of Rij , the variable s should
be calculated from the effective incoming states. The scattering angle can be calculated in
the Z frame using the formula for θ∗ or θ•, see Ref. [40]. In the collinear limit for photon
emissions, Lorentz transformation between the τ+, τ− and Z rest frames is reduced to a
simple boost along the τ+ − τ− flight directions in the Z rest-frame.

Further improvements with respect to that description require explicit use of higher order ma-
trix elements. The approximation described is already quite good and works up to αQED/π ≃
0.1 - 0.2 % precision level, for observables where it is not requested explicitly that high pT

photons are present.

The situation with initial state parton shower emissions is similar, however in this case the
omitted terms for the R calculation may be of the order of αQCD/π. Thus significantly larger,
but still at the level of ten percent or so.

If the event record under study originates from experimental data, the flavours of the incoming
partons can not be known from the event record itself. Instead, information in PDFs can be
used to attribute such flavours on a statistical basis and then used in the calculation of the
matrix Rij .

4.5 Exact Spin Effects and Helicity States

Earlier in this section we have listed some examples of spin polarization, spin correlation and
density matrices. Those matrices can be easily changed/replaced by the externally calculated
ones for the sake of studying new physics phenomena, for example to study the consequence
of certain types of spin correlations on signal/background separation. In this way, the effects
of new physics or ad hoc modification of spin effects, component by component, can be easily
included.

For calculating complete spin correlations, including the effects of genuine weak corrections
in the case of the single boson mechanism of τ -pair production, another solution is also
prepared, see Section 5. It works in the case of an intermediate γ∗/Z state produced in the
annihilation of a pair of quarks. This can serve as an example for other processes which can
be implemented in a similar manner.

Let us stress that in the case of including complete spin effects it is not possible to attribute
helicity states to the produced τ leptons. This can be done only in an approximate way. For
that purpose, a modified version of formula (1) can be used. The weight for each helicity
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configuration is:

weight(± ,± ) =
1

4

4
∑

i,j,i′j′=0

h1
i′h

2
j′RijP

1
ii′P

2
jj′ (2)

The matrices P 1,2 (spin projection operators) read

P 1,2 =









1 0 0 ±1
0 0 0 0
0 0 0 0
±1 0 0 1









As a consequence for Hel1=±1 and Hel2=±1








weight(+, +) = (h1
0 + h1

3) (h2
0 + h2

3) (R00 + R03 + R30 + R33)
weight(+,−) = (h1

0 + h1
3) (h2

0 − h2
3) (R00 − R03 + R30 − R33)

weight(−, +) = (h1
0 − h1

3) (h2
0 + h2

3) (R00 + R03 − R30 − R33)
weight(−,−) = (h1

0 − h1
3) (h2

0 − h2
3) (R00 − R03 − R30 + R33)









The actual helicities can then be attributed by unweighting the above helicity weight.

It is no omission that we are not explicit on sign conventions for the generated helicity
variables Hel1 and Hel2. This depend on the particular choice of boosting routine. Our
choice adopted here is, that for the τ pair produced at the Z peak on average both Hel1 and
Hel2 will be negative and Hel1 = Hel2.

5 Electroweak Corrections and Refined Spin Effects

5.1 External Calculation of the Spin Density Matrix Rij

Our program is equipped with methods for calculating simple spin density matrices for most
of the interesting hard processes. These methods are explained in the text of the paper, see
Section 4. In some cases, notably in the case of τ+τ− produced from the annihilation of a
pair of quarks, the standard density matrices may not be sufficient for some applications. A
more exact solution is also available. Instead of a native Rij density matrix, an externally
calculated one can be used.

The solution is based on the SANC library [45, 46] for calculation of electroweak corrections19.
With its help the density matrix Rij for the qq̄ → τ+τ− process can be calculated as a
function of the incoming state flavour and Born level variables (Mandelstam s and scattering
angle θ). An additional two weights are also provided, which include the matrix elements
squared and averaged over the spin. For additional weights, genuine weak corrections are
respectively switched on and off. This may be helpful for the evaluation of genuine weak
corrections for states of large s, significantly above the Z peak, where they become sizable.
See eg. Refs. [36, 37].

For better modularity of the interface and to speed up execution of the program, pretabulation
is used. At first, a dedicated module has to be invoked, as will be explained later. In such
dedicated runs, Rij is calculated and stored in a lattice of (s and cos θ) points.

19It may serve as an example of how other calculations featuring heavy Z′ boson, for example, may be used

in our interface.
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Later, in the actual execution of our interface, these pretabulated values of Rij are interpo-
lated to the actual phase space point. For this purpose, the standard bilinear interpolation
algorithm is used. Additionally, in order to avoid numerical errors, for cos θ values near -1
and 1 we use the linear extrapolation algorithm.

Pretabulation is prepared for three domains of s: around the Z peak, close to the WW pair
production threshold and over a broad energy range. The specific choice for pretabulation
zones is 85 GeV<

√
s < 110 GeV, 160 GeV<

√
s < 220 GeV20 and 6 GeV<

√
s < 17 TeV.

For s below 36 GeV2 the analytic form taken from Ref. [13] is used. It features all spin and
mass effects, but electroweak corrections, and even Z exchange, are not taken into account.
This is reasonable for s < 36 GeV2 (up to, say, 100 GeV2).

The advantage of this solution is that results of the SANC library calculation can be modified
by the user before it is loaded into our interface without altering the code of the interface
itself.

5.2 Conventions of Frames: KORALB, SANC and TAUOLA Inter-

face

It is not essential for TAUOLA Interface and the component which calculates electroweak cor-
rections to follow exactly the same conventions for spin quantization. In TAUOLA Interface

we follow the frame orientation exactly as in paper [47]. The adopted frame orientation is
shown in Fig. 2(a). In SANC, the orientation of axes is different, see Fig. 2(b). In the case of
our interface, the beam momenta are laid along the z axis. The antiparticle beam is parallel,
particle beam is antiparallel. The y component of the τ− is always positive. The θ angle
to be used for calculation of the density matrix is between the directions of the antiparticle
beam and the τ+. In the case of the SANC module, the τ momenta, pτ+ and pτ− , lie in the xz
plane. The xz plane is the reaction plane: a beam of particles (quarks or leptons) is parallel
to the z axis. The x component of pτ− is always negative. The y

′

and y
′′

axes of the τ+

and τ− spin frames correspondingly have opposite direction to each other. The y
′′

axis is
parallel to the y axis of the hard process frame. Appropriate rotations and other convention
adjustments are performed by the program in preparation of the Rij tables: SANCtable.cxx.

5.3 Numerical Significance of Electroweak Corrections

One may wonder whether the numerical results induced by electroweak corrections are of
any practical purpose. They are expected to be of the order of 1% and indeed are not even
that large for an intermediate state virtuality of up to 100 GeV above the Z boson mass.
The situation changes significantly, however, at higher energies. As can be seen from Figures
3 and 4 the effect may be of the order of even 50% at virtualities of several TeV. This is
quite in agreement with the results of Refs. [37, 36]. In Figures 5(a) and 5(b) we collect
results for τ polarization calculated at cos θ = −0.2. Again, the effects are small up to the
energy scale of about 500 GeV. At larger scales, corrections become sizable. The electroweak
corrections should therefore be considered in studies aiming for new physics phenomena such
as Z ′ → τ+τ− decays.

20 In the case when the application is to Z′, this pretabulation zone should be replaced, for example by

MZ′ − 3ΓZ′ <
√

s < MZ′ + 3ΓZ′ .
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(a) KORALB-like orientation (b) SANC module orientation

Figure 2: The relative orientation of reference frames for the spin states of τ+, τ− and for
hard processes as used in our interface (Fig. (a)) and in the SANC module (Fig. (b)) are
shown. In Fig (a) the axes x (not shown explicitly), x′ and x′′ are parallel to each other and
point behind the picture, axis z is parallel to the direction of the anti-particle beam. In Fig
(b) the axis z is parallel to the direction of the particle beam, the axis y′ points behind the
picture. Axes y (not shown explicitly) and y′′ point toward the reader and are antiparallel
to y′.

6 Tests of Spin Correlations and Numerical Results

There are two purposes of the results presented in this section. On one hand these results
complement the technical tests described in Appendix B.4 with the ones oriented toward
a particular hard processes. The technical tests should be repeated for every new program
installation or configuration. On the other hand, results of the present section are of potential
physics interest as well. They illustrate the dominant spin effects on idealized distributions
for Z, W and H decays. Distributions are similar for the e+e− and LHC measurements.

Tests presented here were conducted using MC-TESTER [26, 27]. MC-TESTER allows semi-
automated comparisons of invariant mass distributions of each sub-group of eg. τ or Z stable
decay products. The results of these tests were also compared to the results obtained with
the FORTRAN interface (which has been well validated by comparison with analytical and
numerical calculations for τ pair production21).

In addition to this, we created custom MC-TESTER macros for plotting other spin sensitive
quantities and compared these to published results. Numerical results are presented later in
the section, see Figs. 8(a), 8(b) and 9(a), 9(b).

6.1 Z/γ → τ+τ−

The longitudinal spin effects for a Z decay into τ ’s was tested by restricting the τ decay
mode to τ± → π±ντ and examining the invariant mass of the π+π− pair, Mπ+π− (see Fig.
6(a)) and the π energy distribution in the rest frame of the Z (see Fig. 6(b)). The effect of
Z polarization on these distributions was studied in [41] and we obtained consistent results

21This represents tests of the interface. In all cases τ decays are generated with the help of TAUOLA FORTRAN.

For a review of physics oriented tests of τ decays themselves, and projects for future improvements based on

low energy e+e− data, see Ref. [12].
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Figure 3: The integrated cross section of τ pair production from up quarks calculated with
and without NLO EW corrections (red and blue lines) is shown in the left hand side plot. The
ratio of the two distributions is given on the right hand plot. We use the alpha scheme for
electroweak corrections. This is why light fermion loops contribute to the difference between
the two lines. The differences between the alpha scheme Born predictions and expressions
used in the host program must be understood before the correcting weight (see Appendix
C.7) is used.

with the new C++ implementation of TAUOLA Interface.

6.2 H0/A0 → τ+τ−

As was done for the Z decay in Section 6.1, longitudinal spin effects for the Higgs decay into
τ ’s was tested using Mπ+π− (Fig. 7(a)) and the π energy distribution in the rest frame of the
H0 (see Fig. 7(b)), which was flat as expected.

Let us now turn to transverse spin correlations. In Fig. 8(a) the benchmark histogram as
produced by our FORTRAN Interface and given in Fig. 3 of Ref. [48] is reproduced22. It
features acollinearity of the π+, π− pair in the Higgs boson rest frame, both τ ’s decay to π±ν.
For the same decay set up, Fig. 8(b) features the acoplanarity of the planes built respectively
from the directions of the decay products of τ+ and τ−. The spin effect is indeed large.
However, it requires use of unobservable neutrino momenta. It is difficult or even impossible
to achieve sufficient experimental precision in reconstruction of the reaction frame necessary
for this observable. The first observable, presented in Fig. 8(a), also suffers from the same
limitation.

22 In this plot the case of non zero scalar-pseudoscalar mixing was chosen. This is the origin of the difference

with Ref. [48].
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Figure 4: The integrated cross section of τ pair production from down quarks calculated with
and without NLO EW corrections (red and blue lines) is shown in the left hand side plot. The
ratio of the two distributions is given on the right hand plot. We use the alpha scheme for
electroweak corrections. This is why light fermion loops contribute to the difference between
the two lines. The differences between the alpha scheme Born predictions and expressions
used in host program must be understood before the correcting weight (see Appendix C.7)
is used.

The two other tests, Figures 9(a) and 9(b) present the distribution of the acoplanarity angle
for the two planes built respectively from the momenta of π+π0 and π−π0; the decay products
of ρ+ and ρ−. All are in the rest frame of the ρ-pair. It is directly based on measurable
quantities. The ρ± originate respectively from τ± → νρ± decays. There is no need for
Higgs rest frame reconstruction in this case. Events are divided into two categories. If the
energy difference between charged and neutral pions coming from the two τ ’s are of the same
sign, they contribute to Fig. 9(a), otherwise they contribute to Fig. 9(b). For details of the
definition and for more numerical results obtained with the TAUOLA FORTRAN Interface, see
[49].

6.3 W± → τ±ντ and H± → τ±ντ

For the simplest decay mode, τ± → π±ντ , as was already discussed in Ref. [41], the pion
energy spectrum should be softer in the case of W± decays and harder in the case of charged
Higgs decay. This is indeed reproduced in Figs. 10(a) and 10(b) and the spectra are reversed
for the two cases.
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(a) Up quarks (b) Down quarks

Figure 5: Polarization for τ leptons produced from up quarks (Fig. (a)) and down quarks
(Fig. (b)) at cos θ = −0.2. The red line is with electroweak corrections, the black is Standard
Born as is default in the interface. The blue line is Born according to the alpha scheme. The
main purpose of these results is a technical test of the software installation. Note however
the inadequateness of the alpha scheme Born, which is significantly different from the other
two results even at relatively low energies. The small bump on the red line on Fig. (a) is due
to the WW threshold. It is insignificant for positive cos θ.
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Figure 6: Longitudinal spin observables for the Z boson (e+e− → Z at 500 GeV). Distribu-
tions are shown for spin effects switched on (red), spin effects switched off (green), and their
ratio (black). The plots are given in the default format of our example programs (included
in the distribution tar ball). They are produced with the help of MC-TESTER [27]. Each plot
is supplemented by an MC-TESTER defined titlebox and SDP parameter.

7 Outlook

Let us summarise briefly the next steps which are planned for the work on TAUOLA Universal

Interface.

• Further extension of our work will focus on studies to recover spin states from quantities
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Figure 7: Longitudinal spin observables for the H boson for τ± → π±ντ . Distributions are
shown for spin effects switched on (red), spin effects switched off (green), and their ratio
(black). The plots are given in the default format of our example programs (included in
the distribution tar ball). They are produced with the help of MC-TESTER [27]. Each plot is
supplemented by an MC-TESTER defined titlebox and SDP parameter.
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Figure 8: Transverse spin observables for the Higgs boson for τ± → π±ντ . Distributions
are shown for scalar Higgs (red), scalar-pseudoscalar Higgs with mixing angle π

4 . For the
definition of angles see Section 6.2.
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Figure 9: Transverse spin observables for the Higgs boson for τ± → π±π0ντ . Distributions
are shown for scalar Higgs (red), scalar-pseudoscalar Higgs with mixing angle π

4 (green). For
the definition of angles see Section 6.2.

which can be measured experimentally. A discussion of theoretical systematic error for
such reconstructed spin states will require discussion of QCD corrections.
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Figure 10: Pion energy spectrum in the rest frame of W (left hand side) and H+ (right-hand
side). Spin effects included (red line) and neglected (green line) are plotted. The variable

1 − 2 Eπ+

MW+
or 1 − 2 Eπ+

MH+
is used respectively.

• At present, our interface is designed to work with the HepMC event record. However,
if a new event record structure became popular it would be rather easy to adapt to,
thanks to the design we tested in MC-TESTER [26, 27].

TAUOLA Universal Interface as well as TAUOLA itself are expected to remain framework-
like code where the user is supposed to modify some of the parts according to her/his
particular purposes.

• The segment of code for analyzing the hard process and generating spin states is now
becoming a significant component of the project and already exceeds by far the category
of peripheric methods related to TAUOLA Interface. In the future it should be moved
to a separate class.

• We expect that in the next few years better parametrization of hadronic form-factors
based on τ data from the Belle and BaBar collaborations and refined models of decays
will become available. Then the directory /tauola-fortran will be replaced by a new
version incorporating those achievements.
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A Appendix: Interface to TAUOLA FORTRAN

From the point of view of a C++ interface, the τ decay library should be seen as a black-box.
The code of the library is stored in the directory tauola-fortran and is identical to the one
stored in the directory TAUOLA, documented in Ref. [1]. Minor adaptations which have been
made affect platform-dependent files only. In the future, we expect this part of the code to
be replaced with a new version based on the work proposed in [12]. This is one of the main
reasons why we still keep the code in FORTRAN.

This section is addressed to developers of the interface, and special users interested in versions
of the TAUOLA initialization other than the default one, cleo. For this purpose we describe the
common blocks and routines which allow communication between TAUOLA and TAUOLA C++

Interface, even though they are explained already in Refs. [9, 10, 11, 1]. The repetition here
is convenient to provide an easier explanation of the user configuration discussed in Appendix
C.

A.1 Common Blocks

IDFC τ PDG id

IDFF int PDG id of the ‘first’ τ must be 15 or -15

TAUPOS Position of τ ’s in the event record common block

NPA int first τ position

NPB int second τ position

PARMAS Particles masses and widths

AMTAU float mass of τ

AMNUTA float mass of ντ
23

AMEL float mass of e

AMNUEL float mass of νe

AMMU float mass of µ

AMNUMU float mass of νµ

AMPIZ float mass of π0

AMPI float mass of π±

AMRO float mass of ρ. (As used in some but not all decay channels for parametriza-
tion of hadronic currents. The same is true for all other unstable intermediate
state particles and resonances.)

GAMRO float width of ρ

AMA1 float mass of a1

GAMA1 float width of a1

23 An unphysical (large) default of 10 MeV is kept as in the old FORTRAN applications. It was verified that the

effect of such a value is numerically insignificant. This parameter is of interest only for low energy applications

aiming to measure the τ neutrino mass.
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AMK float mass of K±

AMKZ float mass of K0

AMKST float mass of K∗

GAMKST float width of K∗

JAKI Control variables for the decay channels

JAK1 int chosen decay channel for the first τ , if set to 0 a random choice will be made
according to predefined branching ratios

JAK2 int chosen decay channel for the second τ , if set to 0 a random choice will be
made according to predefined branching ratios

JAKP int used in some FORTRAN applications only

JAKM int used in some FORTRAN applications only

KTOM int used in some FORTRAN applications only

TAURAD Variables for QED radiative corrections in leptonic τ decay channels

ITDKRC float 1/0 radiative correction on/off

XK0DEC float minimal energy of photon to be generated (with respect to maximum
possible value).

TAUBRA Variables for the composition of τ decay channels.

GAMPRT[30] float (non-negative) one dimensional matrix of τ decay branching
ratios used if JAK1=0 or JAK2=0. This can be changed by the user at any time
during the generation. GAMPRT does not need to sum up to 1. The default
of any entry can be changed by invoking the method Tauola::setTauBr(int i,

double br).

JLIST[30] integer one dimensional table, to be left unchanged. It is basically a
FORTRAN emulation of a table of pointers.

NCHAN integer the number of τ decay channels which can be used, all higher than
NCHAN values of GAMPRT are dummy.

TAUKLE Further variables for the composition of some of the τ decay sub-channels

BRA1 float relative branching ratio between a0 → π+π+π− and a0 → π0π0π+

BRK0 float relative branching ratio of K0 decay

BRK0B float relative branching ratio of K̄0 decay

BRKS float relative branching ratio of K∗ decay

A.2 Routines

A.2.1 Important TAUOLA FORTRAN Routines

INIETC Initialize the content of the JAKI and TAURAD common blocks.
Return type: void
Parameters: none
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INIMAS Initializes the masses stored in the common block PARMAS
Return type: void
Parameters: none

INIPHX Initializes parameters of QED, in the common block QEDPRM.
Return type: void
Parameters: none

INITDK Initializes kinematical information on τ decay channels: the branching fractions
to be used for when JAK1=0 or JAK2=0, masses and flavours of scalars for each decay
channel, names of the decay channels. This is well documented in the FORTRAN version
of the program. This routine should be left unchanged. The defaults of the GAMPRT
matrix residing in the common block TAUBRA, can be changed before any consecutive
execution of the routine DEKAY.
Return type: void
Parameters: none

INIPHY Initializes parameters of QED, in the common block QEDPRM,
Return type: void
Parameters:

1. float PI=3.1415...

2. float ALFINV =1/αQED

3. float ALFPI =αQED/π

4. float XK0 = a dummy variable at present

DEXAY Generates a decay of a polarized τ . DEKAY is more powerful for spin effects and
should be used in preference to this.
Return type: void
Parameters:

1. int state parameter defining the choice between τ+ and τ−. If set to 1, the decay
of τ with ID=IDFF will be performed, otherwise it will be performed for a tau
with ID=-IDFF. In both cases FILHEP will be invoked to store the appropriate
decay products in the event record.

2. double pol[4] input τ polarization vector.

DEKAY Generates an unpolarized τ decay
Return type: void
Parameters:

1. int state parameter defining the choice between τ+ and τ−. If set to 1, the decay
of a τ with ID=IDFF will be performed, for 2 it will be performed for a tau with
ID=-IDFF. For 11 and 12 FILHEP will be invoked to store the appropriate decay
products in the event record.

2. double [4] returns the vector H see Section 4
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A.2.2 C++ Routines Called by TAUOLA FORTRAN

void filhep (int n, int status, int pdg id, int mother first, int mother last, int daugh-
ter first, int daughter last, float p4[4], float p inv mass, bool photos flag);
puts a particle into the event record. A long list of its parameters (variables named in
HEPEVT style), is given below:

1. n index of the particle

2. status status code of the particle

3. pdg id PDG id of the particle

4. mother first index to the particle’s first mother

5. mother last index to the particle’s last mother

6. daughter first index to the particle’s first daughter

7. daughter last index to the particle’s last daughter

8. p4[4] 4-momentum, the last component is energy

9. p inv mass mass of the particle

10. photos flag should PHOTOS be called for this particle

void tralo4 (float * kto, float p[4], float q[4], float * ams); FORTRAN routine which is
used to boost the four vector p[4] from the first/second τ ’s (kto=1/2) rest frame to the
laboratory frame q[4]. ams denotes a four vector mass or virtuality.

float amas4 (float*); returns the mass of the argument four vector.

void bostr3 (float*, float*, float*); This routine performs boosting (with boost param-
eter given by the first argument) of a four vector (second argument) into a four vector
(third argument).

B Appendix: User Guide

B.1 Installation

Tauola C++ Interface is distributed in a form of an archive containing source files and
examples. Currently only the Linux and Mac OS24 operating systems are supported: other
systems may be supported in the future if sufficient interest is found.

The main interface library requires that HepMC [19] (version 2.04 or later) has been installed
and its location has been provided during the configuration step. This is sufficient to compile
the interface and to run the simple, standalone example.

However, in order to run the more advanced examples located in the /examples directory, it
is required to install also:

24For this case LCG configuration scripts explained in Appendix B.2 have to be used.
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• ROOT [50] version 5.18 or later

• PYTHIA 8.1 [15] or later. PYTHIA 8.1 must be compiled with HepMC 2.xx so that the
PYTHIA library hepmcinterface exists.

• MC-TESTER [26, 27] version 1.24 or later. In MC-TESTER the same path to HepMC as in
our main interface library has to be used.

In order to compile the TAUOLA C++ Interface:

• Execute ./configure with the additional command line options:

--with-hepmc=<path> provides the path to the HepMC installation directory. One
can also set the HEPMCLOCATION variable instead of using this directive. To compile the
interface without HepMC use --without-hepmc

--with-tau-spinner --with-lhapdf=<path> turns on compilation of TauSpinner
package and provides the path to the LHAPDF installation directory. TauSpinner is an
optional library and these two flags does not have to be provided to compile the inter-
face.

--prefix=<path> provides the installation path. The include and lib directories
will be copied there if make install is executed later. If none has been provided, the
default directory for installation is /usr/local.

• Execute make

• Optionally, execute make install to copy files to the directory provided during con-
figuration.

After compiling the TAUOLA/tauola-fortran part, the TAUOLA C++ Interface will be com-
piled and the /lib and /include directories will contain the appropriate libraries and include
files.

In order to compile the examples, enter the /examples directory and:

• Compilation of TAUOLA C++ Interface has to have already be completed.

• Execute ./configure to determine which examples can be compiled. Additional paths
can be provided as command line options:

--with-pythia8=<path> provides the path to the Pythia8 installation directory.
One can set the PYTHIALOCATION variable instead of using this directive. This path is
required for all additional examples and tests.

--with-mc-tester=<path> provides the path to the MC-TESTER installation di-
rectory (the libHepMCEvent must be compiled as well, see [27] for more details). One
can set the MCTESTERLOCATION variable instead of using this directive. This path is re-
quired for all additional examples and tests. This option implies that ROOT has already
been installed (since it is required by MC-TESTER). The ROOT bin directory should be
listed in the variable PATH and the ROOT libraries in LD LIBRARY PATH.

Note that the installation of TAUOLA C++ Interface and installation of the exam-
ples can be independent. This is why, if the /examples directory is not in its default
place, the following options must be provided during configuration:

--with-tauola=<path> provides the path to the TAUOLA libraries and include
files.

--with-hepmc=<path> provides the path to HepMC.
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• execute make

If neither Pythia8 nor MC-TESTER are present, only the simple example will be provided. The
/examples directory will contain the compiled example files.

B.2 LCG configuration scripts; available from version 1.0.4

For our project still another configuration/automake system was prepared for use in the
LCG/Genser project25 [51, 52].

To activate the set of autotools[53]-based installation scripts, enter the platform directory
and execute the use-LCG-config.sh script there. Then, the installation procedure and the
names of the configuration script parameters will differ from the ones described in our paper.
The instructions given in the ’./INSTALL’ readme file created by the use-LCG-config.sh

script should be followed. One can also execute ./configure --help. It will list all options
available for the configuration script.

Some short information on these scripts can be found in README of the main directory as well.

B.3 LCG configuration scripts, RChL currents and TauSpinner

When LCG configurations scripts are used, usage of RChL currents becomes less straigh-
forward than the method described in README-RChL-currents residing in main directory.
Nonetheless, if user were to compile RChL currents separately, the resulting library can be
swaped with the default libTauolaFortran. This is true both for libTauolaFortran.so

or libTauolaFortran.a created by following directives in README-RChL-currents, and for
glib.a obtained from standalone version of TAUOLA-FORTRAN with RChL currents. New li-
brary can be linked instead of default one, while the remaining libraries are left intact. For
example, user may setup his linking procedure as:

-L$(TAUOLALOCATION)/lib -lTauolaCxxInterface -lTauolaTauSpinner

$(RCHL)/lib/libTauolaFortran.so

where $(TAUOLALOCATION) denotes installation directory of the interface while $(RCHL) de-
notes installation directory of the library with RChL currents. Note that in this case one
should not use -lTauolaFortran but provide the full path to the library to avoid confusion
about which library is actually used.

This method works for Tauola C++ Interface version 1.1.0 or later, as in this version sup-
port for RChL currents has been introduced.

B.4 Elementary Tests

The most basic test which should be performed is verification that the interface is installed
correctly, that all τ leptons are indeed decayed by the program and that energy momentum

25We have used the expertise and advice of Dmitri Konstantinov and Oleg Zenin in the organization of

configuration scripts for our whole distribution tar-ball as well.
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conservation is preserved. TAUOLA has its own database of parameters and as a consequence
the τ lepton mass may differ between the program performing a τ ’s production and TAUOLA

performing its decay. This leads to the sum of τ decay product momenta not exactly matching
the τ ’s momentum. Although this effect may seem negligible, it may break the numerical
stability of programs like PHOTOS if they are applied later.

Once correct execution of the basic program steps have been confirmed, ie. τ leptons are
decayed, energy momentum is conserved and there are no double decay occurrences in the
event tree, step one of the program installation tests is completed26.

In principle, these tests have to be performed for any new hard process and after any new
installation. This is to ensure that information is passed from the event record to the in-
terface correctly and that physics information is filled into HepMC in the expected manner.
Misinterpretation of the event record content may result in faulty generation by TAUOLA. For
example spin correlations may be missing or badly represented, or some τ leptons may remain
undecayed.

B.5 Executing Examples

Once elementary tests are completed one can turn to the more advanced ones. The purpose
is not only to validate the installation but to demonstrate how the interface can be used and
how spin affects some distributions.

The examples can be run by executing the appropriate .exe file in the /examples directory. In
order to run some more specific tests for spin effects and decays of the following intermediate
states: Z, W , H, H±, the main programs residing in subdirectories of the same name placed
in the /examples/testing directory should be executed. For tests of all τ decay modes, the
directory /examples/testing/tau is prepared. In all cases the following actions have to be
performed:

• Compile TAUOLA C++ Interface as well as the examples. Note that paths both to
Pythia8 and MC-TESTER must be provided.

• Check that the appropriate system variables are set: normally set by the script
/configure.paths.sh (the configuration step mentions this script).

• Enter the /examples/testing directory and execute make. Modify test.inc if needed.

• Enter the chosen directory and execute make.

The appropriate .root files as well as .pdf files generated by MC-TESTER will be created inside
the chosen directory. One can execute ’make clobber’ to clean the directory. One can also
execute ’make run’ inside the /examples/testing directory to run all available tests one
after another. New source code changes can easily be validated in this way. Tests are run
using examples/testing/tauola test.exe and booklets will be produced with comparisons
to the benchmark files.

26 We have performed such tests for all choices of the HepMC event record obtained from PYTHIA 8.1 pro-

cesses and listed later in the paper. Further options for initializations (parton shower hadronization or QED

bremsstrahlung on/off etc.) were studied. This installation step was a necessary one of program development

as well.
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A set of benchmark MC-TESTER root files are packed with the interface distribution in the
subdirectories of examples/testing/. They can be used as examples to start new work or
simply to construct comparison plots to validate new versions or new installations of TAUOLA
Interface.

In Appendix C possible modifications to the examples settings are discussed. This may be
interesting as an initial step for physics studies users. Numerical results of some of these tests
are collected in Section 6 and can be thus reproduced by the user.

B.5.1 Monitoring τ Decay Channels

It is important to check, if the τ decays themselves, are generated correctly on a user’s
platform. For that purpose, our last demo (directory /examples/testing/tau) is prepared.
If the test is activated, the user performs a standard MC-TESTER comparison of his program
execution with the pre-generated one (of 10 million events). In this case all τ decay modes
are activated and MC-TESTER simply analyzes the τ decays themselves.

B.6 Library Linking

In order to link the libraries to a user’s project, both the static libraries and shared objects
are constructed. To use TAUOLA FORTRAN and TAUOLA Interface in an external project,
additional compilation directives are required. For the static libraries:

• add -I<TauolaLocation>/include at the compilation step,

• add <TauolaLocation>/lib/libTauolaCxxInterface.a and
<TauolaLocation>/lib/libTauolaFortran.a at the linking step.

• add <TauolaLocation>/lib/libTauolaTauSpinner.a if TauSpinner library has been
compiled and will be used in user project.

For the shared objects:

• add -I<TauolaLocation>/include at the compilation step,

• add -L<TauolaLocation>/lib along with -lTauolaCxxInterface -lTauolaFortran

at the linking step.

• add also -lTauolaTauSpinner if TauSpinner library has been compiled and will be
used in user project.

• TAUOLA libraries must be provided for the executable; eg. with the help of LD LIBRARY PATH.

<TauolaLocation> denotes the path to the TAUOLA installation directory.

B.7 Known Issues

We list here difficulties we’ve encountered during the testing phase and during installation
for particular configurations.
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The first problem occurs if a user incorrectly configures the units of PYTHIA to be different
from the units in HepMC. (For example: if PYTHIA produces output in MeV, while HepMC

interprets input as being in GeV). In this case, the built-in routines of TAUOLA Interface

will treat the input as being in GeV and will adapt its output to those units as well. If this
kind of situation occurs (the user will be notified by many warnings of four-vector momentum
not being conserved), one can force HepMC to use MeV units just before filling it with the
PYTHIA event record data. The HepMC event will be automatically converted to GeV when
TAUOLA Interface is called.

Another example of a known compatibility issue arose because of a difference between the as-
sumed default HepMC version 2.05 and version 2.03 (currently used, for example, in Athena27).
In this case, the script platform/to-HepMC-2.03.sh will be automatically invoked dur-
ing the configuration step. However, in version 2.03 methods for unit conversion are ab-
sent, therefore GeV and mm will be expected for input and used for output. The method
Tauola::setUnits(...), described in Appendix C.12, becomes dummy.

At present, modification to our TAUOLA C++ Interface has to be introduced eg. for use
in the Athena system of the ATLAS collaboration software. This is to allow for backwards
compatibility with older versions of HepMC and to prevent name clashes with the old TAUOLA

FORTRAN Interface in environments where both interfaces are loaded concurrently. On the
other hand, there is no problem with the library /lib/libTauolaFortran.a, the main part
of the TAUOLA FORTRAN code itself. The version used by Athena can be loaded instead of ours.
In Athena, the binp variant of the cleo initialization is used for TAUOLA; in this variant, for
the 4π decay modes of τ ’s, parametrization based on Novosibirsk data is used [54].

All necessary changes for our TAUOLA C++ Interface can be introduced with use of the script
platform/to-Athena.sh. It can be invoked by executing the make athena command in the
main directory. Recompilation of the interface must then be performed.

C Appendix: User Configuration

In this section we give a description of how the user can configure TAUOLA FORTRAN and
the TAUOLA Interface. All configuration is done via the static class Tauola. Below is the
complete list of user configurable parameters and basic information on their meaning.

C.1 Spin Correlation

By default, all spin correlations are turned on. However one may be interested to partially
or completely switch off their effects for the sake of numerical experiments which validate
whether a measurement will be sensitive to certain spin correlation components. This tech-
nique may be useful to evaluate the significance of spin correlations for signal/background
separation as well.

Several partial treatments of spin correlations are possible. In general, the most complete
intervention is to simply rewrite the matrix Rij for the particular channel. The following
methods are nonetheless provided:

27Software framework of the ATLAS collaboration.
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• Tauola::spin correlation.setAll(bool flag)

Turns all spin correlation computations on or off depending on the flag, which can be
either true or false. Note: this should be called after Tauola::initialize().

• Tauola::spin correlation.<tau parent>=flag

Turns particular spin correlation computation on or off for a given τ parent depending
on the flag which can be either true or false.

Implementation of this switch is provided for: <tau parent>=GAMMA, Z0, HIGGS,
HIGGS H, HIGGS A, HIGGS PLUS, HIGGS MINUS, W PLUS, W MINUS.
The keywords denotes the τ parent.

Example:

Tauola::spin correlation.setAll(false);

Tauola::spin correlation.HIGGS=true;

Turns all spin correlations off, except HIGGS.

Finally one can replace the density matrix following the description given in Appendix D.3.
In this case one does not need to recompile the code.

C.2 Decay Mode Selection

By default, all τ decay modes will be generated according to predefined branching fractions.
Methods to modify the default values are provided:

• Tauola::setSameParticleDecayMode(int mode)

Set the decay mode of the τ with the same PGD code as set in
Tauola::setDecayingParticle() (by default this sets the decay mode of τ−).

• Tauola::setOppositeParticleDecayMode(int mode)

Set the decay mode of the τ with the opposite PGD code as set in
Tauola::setDecayingParticle() (by default this sets the decay mode of τ+).

Example:
Tauola::setSameParticleDecayMode(Tauola::PionMode);

Tauola::setOppositeParticleDecayMode(4);

Forces only the modes τ− → π−ντ and τ+ → ρ+ντ (ρ+ → π+π0) to be generated

• Tauola::setTauBr(int mode, double br)

Change the τ branching ratio for the channel mode from default to br. Note: this should
be called after Tauola::initialize().
Example:
Tauola::setTauBr(3, 2.5);
Sets the rate for the channel τ± → π±ντ to 2.5. Arbitrary, but consistent, units for all
channels may be used. Normalization will be performed anyway.

• The int mode enumerators which are arguments of setOppositeParticleDecayMode,
setSameParticleDecayMode, setTauBr have the following meaning:

42



– 0 - Tauola::All - All modes switched on

– 1 - Tauola::ElectronMode - τ± → e±ντνe

– 2 - Tauola::MuonMode - τ± → µ±ντνµ

– 3 - Tauola::PionMode - τ± → π±ν

– 4 - Tauola::RhoMode - τ± → ρ±ν

– 5 - Tauola::A1Mode - τ± → A±
1 ν

– 6 - Tauola::KMode - τ± → K±ν

– 7 - Tauola::KStarMode - τ± → K∗±ν

– 8 - τ± → 2π±π∓π0ν

– 9 - τ± → 3π0π±ν

– 10 - τ± → 2π±π∓2π0ν

– 11 - τ± → 3π±2π∓ν

– 12 - τ± → 3π±2π∓π0ν

– 13 - τ± → 2π±π∓3π0ν

– 14 - τ± → K±K∓π±ν

– 15 - τ± → K0K̄0π±ν

– 16 - τ± → K±K0π0ν

– 17 - τ± → 2π0K±ν

– 18 - τ± → π±π∓K±ν

– 19 - τ± → π±π0K̄0ν

– 20 - τ± → ηπ±π0ν

– 21 - τ± → π±π0γν

– 22 - τ± → K±K0ν

• Tauola::setTaukle(double bra1, double brk0, double brk0b, double brks)

Change the τ sub-channels branching ratio between (i) a0 → π+π+π− and a0 → π0π0π+

(ii) subchannels of K0 (iii) subchannels of K̄0 and (iv) subchannels of K∗. Note: this
should be called after Tauola::initialize().

Example:
Tauola::setTaukle(0.5, 0.5, 0.5, 0.6667);

Set the parameters to their default values

C.3 Decaying Particle

The following method is prepared to impose the sign for the ’first τ ’, that is to allow reversal
of the signs of the SameParticle and OppositeParticle τ :

• Tauola::setDecayingParticle(int pdg id)

Set the PDG id of the particle which TAUOLA should decay as ’first τ ’. Both particles
with pdg id and -1*pdg id will be decayed. The default is 15, but one may want to use
-15 for special applications.
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Example:
Tauola::setDecayingParticle(-15);

Set SameParticle τ to be τ+

C.4 Radiative Corrections

The user may want to configure parameters used in the generation of QED corrections in the
leptonic decay channels of τ ’s. For that purpose the following methods are provided:

• Tauola::setRadiation(bool switch)

Radiative corrections for leptonic τ decays may be switched on or off by setting the
switch to true or false respectively. By default this is true28.

Example:
Tauola::setRadiation(false);

Switch radiative corrections off in τ decays

• Tauola::setRadiationCutOff(double cut off)

Set the cut-off for radiative corrections of τ decays. The default of 0.01 means that
only a photon of energy (in its rest frame) above 0.01 of half of the decaying particle
mass will be explicitly generated.

C.5 Decay of Final State Scalars

In some cases a user may want TAUOLA to decay short living scalar particles produced in τ±

decays, rather than invoking a host generator for the post processing step. For that purpose
a special algorithm is prepared, even though high precision is then not assured. This might
not be a problem if the algorithm is used for τ decays only where events with such decays
are rather rare:

• Tauola::setEtaK0sPi(int a, int b, int c)

The three parameters a, b and c switch on or off the decay of η, K0
s and π0 respectively.

A value of 1 is on and 0 is off.

Example:
Tauola::setEtaK0sPi(1,0,1);

In the event branch starting from a τ , η and π0 decay, but K0
s remains undecayed.

28Only in the case of leptonic τ decays can radiative corrections be generated in TAUOLA [10]. The algorithm

relies on the first order complete matrix element and no exponentiation is available. If the multiple photon

option is requested or if radiative corrections for other decay channels are needed PHOTOS Monte Carlo can be

used instead [22]. In [55] it was shown, that the numerical effects due to the parts not included in PHOTOS of

the first order matrix element is numerically more significant than multiple photon effects. This conclusion is

based on our standard numerical tests and will not necessarily be the case for other applications.

44



C.6 Scalar-Pseudoscalar Higgs

Users may wish to study spin correlations in processes involving scalar, pseudoscalar or mixed
scalar-pseduoscalar decays into τ ’s. All options are supported by this interface. The spin
density matrix will be calculated correctly for scalar Higgs (assumed PDG id of 25) and
for pseudoscalar Higgs (assumed PDG id of 36) without any additional user configuration.
For other cases, such as a mixed scalar-pseduoscalar Higgs or the decay of non-Higgs scalar
particles, the following methods are provided:

• Tauola::setHiggsScalarPseudoscalarMixingPDG(int pdg code)

The PDG Monte-Carlo code of the Higgs which should be treated by the interface as
a scalar-pseudosclar mix. The default value is PDG id 35. Please note that if pdg code
is set to the value of an existing spin case (eg. 25, the regular scalar Higgs) the scalar-
pseudoscalar case will be assumed.

• Tauola::setHiggsScalarPseudoscalarMixingAngle(double angle)

The scalar-pseudoscalar mixing angle. ie. φ in the coupling: τ̄(cos(φ) + isin(φ)γ5)τ .
By default φ = π

4 .

• Examples:
Tauola::setHiggsScalarPseudoscalarMixingPDG(24);

Tauola::setHiggsScalarPseudoscalarMixingAngle(3.1415/3.0);

Spin correlations will be calculated for the Higgs boson as though it is a scalar-pseduoscalar
with mixing angle of π

3

C.7 Helicity States and Electroweak Correcting Weight

Independent of the generation process, the information on helicities of τ+ and τ− can be
returned29 with the help of accessors:

• int Tauola::getHelPlus()

• int Tauola::getHelMinus()

Note that these helicities are not used in the interface and carry approximate information
only.

The electroweak weight can be returned with the help of accessors:

• double Tauola::getEWwt() - for cross section with electroweak corrections included

• double Tauola::getEWwt0() - for cross section at born level

These methods provide information once processing of a given event is completed.

29 One has to be careful because the actual sign may depend on the process and boosting routine.
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C.8 Redefine on flight τ decay channels

In section C.2 it is explained how the branching ratios for tau decay channels are initialized.
Since TAUOLA version 1.0.2, the appropriate constants can be modified at any moment of the
program execution. For that purpose the user can define the functions

void redPlus(TauolaParticle *tau)

void redMinus(TauolaParticle *tau)

The TauolaParticle pointer can be used, for example, to make a choice of decay chan-
nels dependent on the flavour of the τ ’s mother. The functions will be executed respectively
by TAUOLA Interface prior to each consecutive τ+ or τ− decay, if in the initialization

Tauola::setRedefineTauPlus(redPlus);

Tauola::setRedefineTauPlus(redMinus);

commands are present. An example with explanatory details is given in
taumain pythia example.c.

C.9 Use of the TAUOLA decayOne method

In Section 3.3 an algorithm to decay all τ leptons present in the event record is explained.
For that purpose the decayTaus() method is provided. To decay a single τ lepton in a
way independent of the event record content another, simple method is provided. Obvious
examples when it can be useful, are processes where the hard matrix element originates from
models of new physics, and different flavours of such models are to be tested. In such cases,
universal methods of finding spin states of the τ to be decayed may not exist. Depending
of the precision required one may need to: decay a τ without taking into account its spin
state, impose its individual spin state as input information or provide a method which can be
used for full density matrix generation. In the last case control over Lorentz transformations
between the τ rest-frame and laboratory frame have to be available for the user.

Fortunately for all these applications a rather simple method is sufficient. It can be used to
generate a decay of an individual τ , without information on its parents.

• Tauola::decayOne(

TauolaParticle *tau, bool undecay, double polx, double poly, double polz)

The main routine for decaying a tau. Only the first parameter is mandatory. The
first parameter is a pointer to the τ that needs to be decayed.
The undecay flag determines the reaction that should be taken if the τ already has
daughters. By default the flag is set to false, which means that an already decayed τ
will be left unchanged. Setting this flag to true allows the interface to first undecay
the τ and replace it with a new decay.

The last three parameters are the components of the τ polarization 3-vector30. In the
case of TAUOLA decayOne, the decayed τ is treated as a standalone particle, without
considering its mothers, daughters or siblings. In case the user wants to input the

30Note that the τ− polarization 3-vector (0,0,1) will mean left-handed τ− and right-handed τ+ (if the default

boosting routine is used).
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polarization vector (as a default, the τ is treated as not polarized), the last three
parameters have to be used.

• Tauola::setBoostRoutine(

void (*boost)(TauolaParticle *tau, TauolaParticle *target) )

Once executed, Tauola:decayOne will use the user function instead of the default one,
to boost τ decay products from their rest frame to the lab frame. This feature may be
essential, in future, for the use of Tauola::decayOne as part of a user algorithm for
the generation of exact spin correlations in multi τ final states.

The single tau gun example.c is provided in the directory /examples. If the polarization
polx=0, poly=0, polz=1 is chosen, then the helicity state is taken: left handed τ− or right
handed τ+. If, again as given in the example, Tauola::setBoostRoutine is used with the
proposed method, then polx=0, poly=0, polz=1 will not mean helicity state, but rather
the τ spin polarization vector oriented along the z axis of the lab frame (in fact along its
space component in the τ rest-frame). Obviously a spin effect chosen this way, will depend
on the direction of the τ momentum.

C.10 Logging and Debugging

This section describes the basic functionality of the logging and debugging tool. For details
on its content we address the reader to comments in the /src/utilities/Log.h header file.

Let us present however some general scheme of the tool’s functionality. TAUOLA Interface

allows filtering out some amount of data displayed during the program run and provides a
basic tool for memory leak tracking. The following functions can be used from within the
user program after including the Log.h file:

• Log::Summary() - Displays a summary of all messages.

• Log::SummaryAtExit() - Displays the summary at the end of a program run.

• Log::LogInfo(bool flag)

Log::LogWarning(bool flag)

Log::LogError(bool flag)

Log::LogDebug(int s, int e)

Log::LogAll(bool flag)

Turns logging of info, warning, error and debug messages on and off depending on
the flag being true or false. In the case of debug messages - the range of codes to be
displayed must be provided. By default, only debug messages (from 0 to 65535) are
turned off. If the range is negative (s > e) the debug messages won’t be displayed. The
last option turns displaying all of the above messages on and off.

From program version 1.0.2, a new option, Log::SetWarningLimit(int limit), is available.
Only the first ‘limit’ warnings are then displayed. The default for limit is 100. If limit=0
is chosen then no limits on the warnings displayed will be set.

The memory leak tracking function allows checking of whether all memory allocated within
TAUOLA Interface is properly released. However, using the debug option significantly in-
creases the amount of time needed for each run. Its use is therefore recommended for debug-
ging purposes only. In order to use this option, modify make.inc in the main directory by
adding the line:
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DEBUG = -D" LOG DEBUG MODE "

Recompile the interface. Now, whenever the program is executed a table will be printed
at the end of the run, listing all pointers that were not freed, along with the memory they
consumed. If the interface works correctly without any memory leaks, one should get an
empty table.

It is possible to use this tool within a user’s program, however there are a few limitations.
The debugging macro from ”Log.h” can create compilation errors if one compiles it along
with software which has its own memory management system (e.g. ROOT). To make the macro
work within a user’s program, ensure that Log.h is the last header file included in the main
program. It is enough to compile the program with the -D" LOG DEBUG MODE " directive
added, or #define LOG DEBUG MODE placed within the program before include of the Log.h

file31.

C.11 Plots for Debugging and Monitoring

This section describes the basic functionality of the plotting tool. Detailed explanations are
given in the /src/utilities/Plot.h and /src/utilities/Plot.cxx files.

The Plot class allows generation of data for several plots we use to monitor the interface. At
present, τ polarization, as taken from the SANC library and used by the interface (including its
interpolation algorithm) is monitored in this way. The program generates data files during
execution to be used later for graphic output. This code is not expected to be of a large
interest to users. It is mainly for testing and debugging purposes, but may be of interest for
installation tests as well.

Since version 1.0.3, this class has been simplified. Possible future extensions were kept in
mind. In order to generate input data for plotting, a few methods have been provided which
can be accessed after adding #include "Plots.h" in the main program:

• The following public methods are now available: Plots::SANCtest1()
Plots::SANCtest2()

Plots::SANCtest3()

Plots::SANCtest4()

Each one runs the appropriate test for SANC tables. All or only some of these tests can
be run at a time. Note that our Figures 3, 4, 5(a) and 5(b) can be reproduced with
these methods.

• Plots::setSancVariables(int flavour, double cosTheta) - sets the arguments
of the first two tests: the flavor of the incoming particle (the default is 1), and scattering
angle cos(θ) (the default is -0.2).

A source file /examples/testing/EW-PLOTS/plots.c has been provided which runs all avail-
able tests. It is compiled when make is executed in the examples/testing directory. The
files generated with this tool can be used to make plots with external scripts; the
/examples/testing/EW-PLOTS/draw.C ROOT script has been provided. If root draw.C is
executed, it first checks, by name, which input data files exist and then corresponding plots

31Note that Log.h does not need to be included within the user program for the memory leak tracking tool

to be used only for TAUOLA Interface.

48



are drawn. Since the generated files contain the test data only, without much explanation
of their meaning, to interpret them one needs to look into the Plot class source files for a
description.

C.12 Other User Configuration Methods

The following auxiliary methods are prepared. They are useful for initialization or are intro-
duced for backward compatibility.

• Tauola::setUnits(Tauola::MomentumUnits,Tauola::LengthUnits)

Set output units for momentum (Tauola::GEV / Tauola::MEV) and decay vertex posi-
tion (Tauola::MM / Tauola::CM). Methods are only available for HepMC 2.04 or higher.

• Tauola::setTauLifetime(double lifetime)

Set the mean τ lepton lifetime in mm, lifetime=0.08711. If the user wants a vertex
position to be generated by his own method, then the numerical value of the τ lifetime
should be set to 0.0 here.

• Tauola::setInitializePhy(double iniphy param)

Initializes some constants related to QED corrections. The variable iniphy param is at
present a dummy variable. It is prepared for transmission to some old style production
code and is kept for backward compatibility.

• Tauola::setRandomGenerator(double (*gen)())

In tauola-fortran the random number generator RANMAR is used. It is also used in our
auxiliary methods which temporarily remain in FORTRAN. RANMAR may need to be re-
placed or a particular seed may need to be chosen. It can be easily done and is explained
in [1]. In the C++ part of the code a user can simply set the pointer to the replacement
for an internal random number generator Tauola::RandomDouble. The generator must
return a double between 0 and 1. Tauola::setRandomGenerator(NULL) will reset the
program back to the default generator.

• Tauola::summary()

Prints out a summary of generated decays. This funcion invokes the old TAUOLA

FORTRAN routine. As a consequence, there is a mismatch in the TAUOLA version num-
ber given, but otherwise all information on the generated sample, as explained eg. in
[9, 10, 11], is printed correctly.

D Appendix: Modifying Electroweak Corrections Mod-

ule

D.1 SANC Unit Initialization and Input Parameters

In this section we describe details of the SANC library initialization. Input parameters and
constants are collected in several files located in the directory /SANC. The file s2n declare.h

contains a declaration of all FORTRAN variables used by the SANC NLO Library. The particle
masses and coupling constants are initialized by the sanc input.h header file. It is called
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by the s2n init subroutine (see file s2n init.f), which initializes other parameters like
particle mass ratios, particle charges and weak isospin projection, as well as the value of
the fictitious photon mass (thmu2) used by IR singularity regularization and the soft/hard
radiation separator (omega). Several user controlled flags are defined:

• iqed = 1/0 – NLO QED correction is switched on/off. Default iqed = 0

• iew = 1/0 – NLO EW correction is switched on/off. Default iew = 1

• iborn = 0/1 – NLO correction are switched on/off; Default iborn = 0

• gfscheme = 1/0 – calculation schemes: 1 - Fermi Scheme, 0 - Alpha Scheme (default).

These flags are used to configure table preparation by the program SANC/SANCinterface.cxx.
For the SANC module structure and its project details, see Refs. [45, 46].

Together with the program, the pre-calculated tables are distributed. They are supposed to
be used for the implementation of spin effects and the density of tabulated points is rather
low. For precision applications, such as Z/W line shape studies, further work is needed and
we leave it for a future publication.

D.2 Structure of Files with Pretabulated Rij

In order to generate all pretabulated files the SANC/SANCinterface.cxx program is used.
When compiled along with the SANC library, the SANC FORTRAN Interface and the modules
located inside the SANC/modules directory, the program generates two files - table1-1.txt
and table2-2.txt for the down and up quarks respectively. The program is invoked with the
command make tables from the directory SANC. A third file, table11-11.txt, representing
tabulated results for electron beams will not be generated automatically.

The structure of each generated file consists of several blocks:

• Initialization block

Dimensions - NS1, NS2, NS3 and NCOS values used as dimensions of the gener-
ated tables

Ranges - minimum and maximum values for all three pretabulation ranges of s

• Information block:

Date and time of the generation

Full path of the generating program

SANC library information block

SANC initialization parameters list

• Data block:

BeginRange1 statement

tables of NS1 * NCOS lines for first range

BeginRange2 statement

tables of NS2 * NCOS lines for second range
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BeginRange3 statement

tables of NS3 * NCOS lines for third range

End statement

Lines within Data block consist of 4*4 numbers for Rij , two extra numbers for the elec-
troweak weight and an endline character. Statements used within Data block (Begin-
Range1, BeginRange2, BeginRange3, End) are mandatory and must be present in
exact form. They mark the beginning and end of the appropriate data set. The program
also checks whether the data block has been read completely and verifies if variables read at
initialization were consistent.

D.3 Importing SANC Tables into TAUOLA Interface

The three files generated by the SANC module are loaded into TAUOLA Interface during
the initialization step, if they are located in the directory of the main program. When
Tauola::initialize() is called, the interface searches for the appropriate files and if they
are found - attempts to import the data.

For a file to be loaded correctly, the dimensions of the input file must match the interface
settings. The content and size of the information block is arbitrary. The information of this
block will be printed only, but not used otherwise. After reading all the tables from one
file, TAUOLA Interface checks if the end of the data block has been reached and eventually
proceeds to the next file.

If the dimensions do not match, the file is inconsistent with the structure (the end of the data
block has not been reached or the file has insufficient data) - it will not be used by TAUOLA

Interface even if the file was found. In that case the default density matrix will be used.
TAUOLA Interface will attempt to read all of the three files, but if either one is incorrect or
missing, only the data from those files that have been loaded correctly will be used.

If the need arises to modify the default tables distributed with TAUOLA, the SANC folder
includes all routines needed to generate new tables along with a Makefile with a few options,
including:

• make - used to recompile the library, modules and LoopTools needed for generation.

• make clobber - might be needed to remove the previous compilation.

• make tables - used to compile the interface code and generate the tables.

The C++ interface to the SANC library is located in the SANC/ folder. SANCinterface.cxx

represents the main program with options setting for table making. Options for table layout
are explained in comments within the file. The interface will be recompiled every time make

tables is used. If needed, further program options, such as initialization of electroweak
coupling constants or particle masses for the calculation of electroweak corrections can be
modified. The SANC/SANCtable.cxx file consists of routines for the actual calculation of
table entries from spin amplitudes calculated from SANC. Changes which may be of interest
to advanced users should be done in this file.
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